[image: image7.png]TECOLOTE
RESEARCH, INC.

Bridging Engineering and Econontics
Since 1973
Equal Opportunity Employer

Browser-based Web Model Case Study

 Tecolote Research, Inc.

ACEIT

Model

Remoting

[image: image1.png]The ACEIT Software Platf

= ACEIT consists of several stand-alone windows-based software
applications which are electronically inter-linked

[Emar Mot
(Excel PRICE:
EER, AMCOS,
OMPASS, e

it .. Excal]

SystamiDesian
Enginecing Toos|

Case Study I: Browser-based Web ACE Model Execution
Version 1.0
9/6/2001

Prepared by: Craig Sturgeon

John McGahan

Software Products/Services Group

Tecolote Research, Inc.

Executive Summary

The US Army Cost and Economic Analysis Center (USACEAC) has continued to advance the Army’s cost analysis program by standardizing on and continuing to improve available costing tools. The automation platform for many of the Army’s costing tools is the Automated Cost Estimating Integrated Tools (ACEIT) set of software applications and databases jointly developed by the Air Force and Army. The goal of ACEIT is to provide a set of Joint Service tools and databases that are consistent and useful to the DOD-wide cost analysis community.

ACEIT is an integrated software suite that is designed to automate the cost estimating and analysis environment. It includes cost database development, and cost analysis, knowledge base development, and cost modeling and estimating functions. ACEIT also includes support for integrating cost modeling and estimating functions into other functional areas such as design engineering and budget execution. ACEIT is comprised of several loosely coupled tools as shown below, including the Automated Cost Database (ACDB), a statistics and regression system tailed for cost analysis (CO$TAT), the Automated Cost Estimator (ACE) modeling and estimating framework, and the ACE Executive cost model integration system.

[image: image8.wmf]KnWS Database

Web Server

Database Server

ACE Automation Component

KnWS Server

Component

Browser

Workstation

LAN/WAN

SQL Server 7.0

KnWS ASP Application

HTTP (Internet or LAN/WAN)

The core estimating and modeling functions of ACEIT are included in Automated Cost Estimator (ACE) component. It provides an easy-to-use estimate framework that automates many of the common functions typically required by a cost estimator, including support for inflation adjustments, learning curves, spreading funding by appropriation and year, cost risk assessment, and sensitivity and what-if analyses. ACE provides ready access to standard cost estimating structures (Work Breakdown Structure and Army Cost Estimating Structure), estimating methodology libraries, and provides built-in support of estimate documentation and reporting. ACE is essentially designed to automate cost estimating functions defined in the Army Cost Analysis Manual. For these reasons ACEIT is the standard cost framework used throughout the Army financial management community for developing life cycle cost estimate and Army cost positions for major programs.

The ACE Executive component provides a mechanism to allow other applications to link directly to cost models and estimates developed in ACE. The ACE Executive is for the most part an Application Programming Interface (API) that allows other applications to execute ACE models with ACE running in a server mode. The most common application of this is running ACE models within the Microsoft Excel application. The ACEIT suite includes a general-purpose client in Excel for the ACE Executive. From within this Excel-based application, you can quickly create Excel interface sheets to one or more ACE models, perform cost trade studies, generate constant year as well as escalated budget estimates and perform risk assessments. Since the interface is based on Excel, all of the integration power built into Excel and Visual Basic for Applications (VBA) is available. In this way, the ACE Executive with the Excel-based client provides a powerful cost model integration framework. Similar functionality can be provided via a Web Server component.

[image: image2.png]ACE Executive
Excel Interface

ACE Cost Model

ACE Executive

Browser interface

COMPANY PROPRIETARY

This document is intended for programmers interested in developing custom applications or web-based solutions that utilize ACE-based cost models running. This might be used to support distributed program management teams, linking to costs to design/engineering systems, and to support CAIV initiatives. It is assumed that readers are familiar with COM-based application development using Visual Basic, Visual C++ or another COM-based development tool. Familiarity with both JavaScript and HTML is also helpful. The majority of this document provides a detailed guide to implementing a Web Server component that provides access to the ACE cost model functionality. The complete application program interface (API) document for the ACE Executive module is included in Appendix A.

61. Case Study Description

1.1 Purpose
6
1.2 Intended Audience and Reading Suggestions
6
1.3 References
6
1.4 Development Tools Used
6
1.5 Server Operating Environment
7
1.6 Browser Compatibility
7
2. Case Study Application Architecture
8
2.1 System Components
8
2.1.1 KnWS Active Server Pages Application
8
2.1.2 KnWS Server Component
8
2.1.3 ACE Automation Component
8
2.2 Architecture Diagram
9
3. Case Study Feature Set Implementation
10
3.1 Drawing the What-If Model Page
10
3.1.1 Description
10
3.1.2 Implementation Details
10
3.1.3 Code Snippet
10
3.2 Drawing the Time-Phased Model Page
13
3.2.1 Description
13
3.2.2 Implementation Details
13
3.2.3 Code Snippet
13
3.3 Opening a Model
17
3.3.1 Description
17
3.3.2 Implementation Details
17
3.3.3 Code Snippet
17
3.4 Calculating What-If Cases
20
3.4.1 Description
20
3.4.2 Implementation Details
20
3.4.3 Code Snippet
20
3.5 Calculating Time-Phased Results
22
3.5.1 Description
22
3.5.2 Implementation Details
22
3.5.3 Code Snippet
22
3.6 Specifying What-If and Time-Phased Input Overrides
25
3.6.1 Description
25
3.6.2 Implementation Details
25
3.6.3 Code Snippet
26
3.7 Adding/Deleting What-If Cases
29
3.7.1 Description
29
3.7.2 Implementation Details
30
3.7.3 Code Snippet
30
3.8 Saving Model Inputs
33
3.8.1 Description
33
3.8.2 Implementation Details
33
4. Glossary
34
Appendix A: ACE API Reference
35
1. Overview
35
2. 4.1 Interface Update
35
2.1 Overview
35
2.1.1 New Behavior
35
2.1.2 Issues
36
2.2 Usage Details
36
2.2.1 Usage Outline
36
2.2.2 VB Usage Details
38
2.2.3 Generic Usage Examples
38
3. API Method Summary
40
3.1 File IO Actions
40
3.2 Calculating a Session
40
3.3 Accessing Session Settings, Titles, etc.
41
3.4 General Sheet Actions
41
3.4.1 Reading from the sheet
42
3.4.2 Writing to the Sheet
43
3.5 Overriding Case and FY Inputs
43
3.5.1 Overriding Sensitivity Case (Total) values:
43
3.5.2 Overriding FY values
44
3.6 Accessing Results
44
3.7 Report-oriented Actions
45
3.8 Properties
45
3.9 Numeric Column Identifiers
47
3.9.1 Case and Yearly Column Identifiers
47
3.9.2 Category Columns
47
3.9.3 Fixed Column Identifiers
47
3.10 Errors and Failures
49
3.11 Not implemented in 4.1
50
3.12 Deprecated Calls
50
3.12.1 Deprecated Properties
51

1. Case Study Description

1.1 Purpose

One of the core features required for the KnWS knowledge management system was to allow users to able to run an ACE model stored in the KnWS document library from a standard browser. This would allow users without ACEIT installed on their desktop to perform what-if and time-phased estimate scenarios similar to the capability provided by the ACEIT Executive. The purpose of this document is to describe how this feature was implemented as part of KnWS. It will also provide an example for developers desiring to create other custom software solutions using the ACE Automation API.

Replicating the complete functionality of the ACEIT Executive as a browser-based application would likely stretch the browser user interface beyond its standard functionality. As a compromise, the following minimal set of core features and requirements were identified for running models in the first version of KnWS:

· Provide a minimal ACE model running capability without requiring an installation of ACEIT.

· Operates using a browser

· Ability to create What-if and Time-phased sheets based on an ACE session

· Ability to provide variable inputs and calculate What-If and Time-Phased sheets

· Display What-If and Time-Phased results of a calculation

· Ability to save What-If and Time-Phased inputs to a file stored in the KnWS document library

· Operates only on models stored in the encrypted ACE file format (i.e., .ACZ files)

· Integrates into the KnWS document management for opening and saving models

This document also provides details about the operating environment, development tools used and browser compatibility. The architecture of the KnWS web application and how the model functionality operates within that environment is also described. A full description, implementation details and code snippets are provided for each feature. Screen shots are provided of the web application in action. As a lead-in to the next research effort, a description of how new technology such as SOAP and .NET will be provide even greater power and flexibility for remote ACE model solutions.

1.2 Intended Audience and Reading Suggestions

This document is intended for programmers interested in developing custom web-based solutions that utilize ACE model running functionality. It is assumed that readers are familiar with COM-based application development using Visual Basic, Visual C++ or another COM-based development tool. Familiarity with both JavaScript and HTML would be helpful. Readers should also be familiar with the basic features provided by ACE and the ACEIT Executive.

1.3 References

The only reference is the ACE Automation API document. It is the core reference used by programmers developing ACE automation solutions. This document is included in Appendix A.

1.4 Development Tools Used

To implement the browser-based web model tool, the following languages/development tools were used:

· Visual Basic 6.0

· Visual C++ 6.0

· Visual InterDev 6.0

· HTML

· Javascript

1.5 Server Operating Environment

The KnWS application and the remote ACE model functionality were implemented within the following server operating environment:

· Microsoft Windows NT 4.0 Server SP4

· Microsoft Internet Information Server 4.0

· Microsoft SQL Server 7.0

· FrontPage Extensions 2000

1.6 Browser Compatibility

Although in general KnWS is a cross-browser application that supports both Microsoft Internet Explorer 4.0+ and Netscape Communicator 4.0+, the model functionality is currently only supported when using Internet Explorer. A Netscape version may be implemented in a future version of KnWS.

2. Case Study Application Architecture

This section identifies and describes the components used to implement the remote ACE model browser functionality. The responsibilities of each component are described in addition to how they interact with one another.

2.1 System Components

2.1.1 KnWS Active Server Pages Application

KnWS is a web-based document management system. It is implemented as an Active Server Pages application.The remote ACE model feature was added to this application. ACE encrypted session files (with .ACZ extension) were added as a recognized file type within KnWS. Once uploaded to a KnWS document folder, users can open one of these ACE models in the remote ACE model browser interface and perform model calculations and what-if exercises much like the functionality in the ACEIT Executive. The ModelRun.asp file is the Active Server Page within KnWS that implements the model functionality.

2.1.2 KnWS Server Component

Although the KnWS ASP application represents the framework for the KnWS application, the KnWS server component contains the majority of the business rules and programming logic for the application. It is a Visual Basic ActiveX DLL that contains several class modules organized by functionality. The Model class module within this component performs the opening, saving and calculating for the remote ACE models. All server component source code snippets provided in the Feature Set Implementation section are contained in this module. It makes extensive use of the ACE Automation Component.

2.1.3 ACE Automation Component

The ACE Automation API is exposed by this COM component. It is a C++ ATL component. It is the same component that is used by the desktop version of the ACEIT Executive to perform ACE session what-if and time-phased calculations. The COM methods and properties exposed by this component allow the developer to create custom ACE desktop and web-based solutions.

2.2 Architecture Diagram

The following diagram shows the relationship between the various KnWS application system components:

[image: image7.png]
Case Study Feature Set Implementation

This section describes how each of the remote ACE web model features was implemented. A description, implementation details and a code snippet are provided for each feature.

2.3 Drawing the What-If Model Page

2.3.1 Description

One of the core features necessary was to be able to render a web page similar in content and format to an ACEIT Executive what-if sheet hosted in Excel. The what-if page is presented as a table containing the WBS, ACE Exec Codes, ACE Exec Types and sensitivity case columns for the selected model (see Figure 1). This functionality was required for any operation that required a refresh of the what-if screen such as opening a model, calculating a model or adding/deleting cases.

[image: image3.png]Madel: 40ExecDema acz

rosoft Internet Explorer

units: [K =] curreney: [$2

wes
1 Recurring Production
2 Manufacturing

3 Antenna

4 Integration

5 System engr./Prog. Mamt
6

7

8

o

INPUT VARIABLES
10 antenna Aperture (sq ft)
11 antenna Buy Quantity

12 antenna Learning Slope

Code
Recurrind,
PHP
ANT
Integratz

System_£3

APERTURE

BUYQ
st

Colcuote. |_add Gose..| el case ,_| sove. |

Type
ouTeuT
ouTeuT
ouTeuT
ouTeuT
ouTeuT

weUT
weUT
neUT

Casel
4556.75
33261
2892.26
433.84
1230.66

200 /]
0 7
w0 7

Casez Cases
11604.56 7937.11
847048 5793.51
7365.64 5037.84
1104.85 755.68
3134.08 21436
250 300

20 10

o2

NN

Figure 1 – What-If Model Page

2.3.2 Implementation Details

The top third of the screen contains the static portion of the what-if page. All buttons, form fields and title text are contained here. This portion of the page is generated as part of the ModelRun.asp Active Server Page. The bottom portion of the screen contains the dynamic rendering of the HTML table containing the ACE model what-if column data. The code for this portion exists in the server-side VB component. Two interactive portions are generated as part of the table output. Sensitivity case column titles are created as hyperlinks to allow modification of the titles. Also, override button images (pencil image) are drawn next to each input cell to allow the user to specify inputs different that the default model values.

2.3.3 Code Snippet

The two core VB procedures involved in drawing the model what-if page are DrawColumnTitles() and DrawModelSheet() which draw the title and data area of the page respectively. Note that both procedures rely on already existing title and table body data arrays. For details on the population of these arrays, see the Opening a Model section.

DrawModelSheet()

‘

' Draws the what-if or time-phased HTML table

'

Public Sub DrawModelSheet()

 ' Write table column titles

 DrawColumnTitles

 Dim WBSLevelStyle As String

 Dim CaseNum As Long

 Dim WBSItem As Long

 Dim YearNum As Long

 Const DQ As String = """"

 Dim CellID As String

 Dim InputTagStr As String

 Dim CellValue As String

 Dim CellType As String

 Dim OverrideValue As String

 Dim OverrideImage As String

 ‘ If we are drawing a what-if page, then

 If (m_IsTimePhased = False) Then

 ‘ For each WBS item, draw the HTML table cells for the WBS, ACE Exec Code,

 ‘ ACE Exec Type and sensitivity case columns.

 For WBSItem = 1 To m_WBSLength

 ‘ Write WBS, ACE Exec Code and Type cells

 Response.Write "<tr>"

 WBSLevelStyle = GetWBSLevelStyle(m_WBS(WBSItem))

 Response.Write "<td class=RowNum>" & WBSItem & "</td>"

 Response.Write "<td nowrap=true " & "class=" & WBSLevelStyle & ">" & m_WBS(WBSItem) & "</td>"

 Response.Write "<td>" & m_Codes(WBSItem) & "</td>"

 Response.Write "<td>" & m_Types(WBSItem) & "</td>"

 ‘ Write each case column including the override bitmap button

 ‘ for any INPUT rows.

 For CaseNum = 1 To m_Cases.Count

 If (m_Types(WBSItem) = "INPUT") Then

 CellID = WBSItem & "_" & m_Cases(CaseNum).ID

 CellValue = m_CaseValues(WBSItem, CaseNum)

 ' If the current cell is an override, then

 ' change the tag to be an override type. Also,

 ' leave the trailing * in the INPUT tag value

 ' string so the browser can set it to be an override

 ' field type and then remove the *.

 If (Right(CellValue, 1) = "*") Then

 CellType = "OV"

 OverrideImage = "ov.gif"

 Else

 CellType = "NM"

 OverrideImage = "nm.gif"

 End If

 InputTagStr = "<td align=right>" & _

 "" & _

 "<IMG border=0 align=absBottom name=" & _

 CellID & _

 " src=""" & OverrideImage & """ >" & _

 "" & _

 "<input class=" & _

 CellType & _

 " id=""" & _

 CellID & _

 """ name=""" & _

 CellID & _

 """ value=" & _

 CellValue & _

 " border=0 align=right size=11>" & _

 "</td>"

 Else

 InputTagStr = "<td align=right>" & m_CaseValues(WBSItem, CaseNum) & "</td>"

 End If

 Response.Write InputTagStr

 Next CaseNum

 Response.Write "</tr>"

 Next WBSItem

 ' Draw Time-phased page

 Else

 …

 End If

End Sub

DrawColumnTitles()

'

' Draws HTML table column titles for what-if or time-phased sheet

'

Private Sub DrawColumnTitles()

 Dim ColumnIndex As Long

 ‘ Write static column titles (e.g., Row Number, WBS, Code Type)

 Response.Write "<tr>"

 Response.Write "<th class=ColHeader width=" & ROWNUM_COLWIDTH & "> </th>"

 Response.Write "<th class=ColHeader width=" & m_WBSColumnWidth & ">WBS</th>"

 Response.Write "<th class=ColHeader width=" & CODES_COLWIDTH & ">Code</th>"

 Response.Write "<th class=ColHeader width=" & TYPES_COLWIDTH & ">Type</th>"

 ‘ Draw what if case column titles

 If (m_IsTimePhased = False) Then

 For ColumnIndex = 1 To m_Cases.Count

 Response.Write "<th class=DataColHeader width=" & CASE_COLWIDTH & ">" & m_Cases(ColumnIndex).Title & "</th>"

 Next ColumnIndex

 ‘ Draw time-phased year column titles

 Else

 …

 End If

 Response.Write "</tr>"

End Sub

2.4 Drawing the Time-Phased Model Page

2.4.1 Description

Another core feature was to be able to render a web page similar in content and format to an ACEIT Executive time-phased sheet hosted in Excel. The time-phased page is similar to the what-if page. It is also presented as a table containing the WBS, ACE Exec Codes, ACE Exec Type (see Figure 2). However, it contains a Total column and one Year column for each fiscal year in the ACE model rather than the sensitivity case columns contained in the what-if page model. This functionality was required for any operation that required a refresh of the time-phased page such as opening or calculating a time-phased model.

[image: image4.png]Madel: 40ExecDema acz

units: K=l currency: [SE]

wes
1 Recurring Production
2 Manufacturing

3 Antenna

4 Integration

5 System engr./Prog. Mamt
6

7

8

o

INPUT VARIABLES
10 antenna Aperture (sq ft)
11 antenna Buy Quantity

12 antenna Learning Slope

Year: [1998

Code
Recurrind,
PHP
ANT
Integratz

System_£3

APERTURE

BUYQ
st

Results: [V =]

Type
ouTeuT
ouTeuT
ouTeuT
ouTeuT
ouTeuT

weUT
weUT
neUT

Total

1998
4556.75 569.96
33261 416.03
2892.26 36176
433.84 54.26
1230.66 153.93

200
0 7 :
w0/

.S

1999
995.49
726.64
63136

94.78
268.86

.S

2000
1342.01
979.57
518
127.77
36244

|

Figure 2 - Time-Phased Model Page

2.4.2 Implementation Details

The top third of the screen contains the static portion of the time-phased page. All buttons, form fields and title text are contained here. This portion of the page is generated as part of the ModelRun.asp Active Server Page. The bottom portion of the screen contains the dynamic rendering of the HTML table containing the ACE model time-phased fiscal year column data. The code for this portion exists in the server-side VB component. As part of the table output, override button images (pencil image) are drawn next to each input cell to allow the user to specify fiscal year inputs different that the default model values.

2.4.3 Code Snippet

The two core VB procedures involved in drawing the model time-phased page are the same procedures used to draw the what-if page: DrawColumnTitles() and DrawModelSheet(). They draw the title and data area of the page respectively. Note that both procedures rely on already existing title and table body data arrays. For details on the population of these arrays, see the Opening a Model section.

DrawModelSheet()

‘

' Draws the what-if or time-phased HTML table

'

Public Sub DrawModelSheet()

 ' Write table column titles

 DrawColumnTitles

 Dim WBSLevelStyle As String

 Dim CaseNum As Long

 Dim WBSItem As Long

 Dim YearNum As Long

 Const DQ As String = """"

 Dim CellID As String

 Dim InputTagStr As String

 Dim CellValue As String

 Dim CellType As String

 Dim OverrideValue As String

 Dim OverrideImage As String

 ‘ If we are drawing a what-if page, then

 If (m_IsTimePhased = False) Then

 …

 ‘ If we are drawing a time-phased page, then

 Else

 ‘ For each WBS item, draw the HTML table cells for the WBS, ACE Exec Code,

 ‘ ACE Exec Type, Total and fiscal year columns.

 For WBSItem = 1 To m_WBSLength

 ‘ Write WBS, ACE Exec Code and Type cells

 Response.Write "<tr>"

 WBSLevelStyle = GetWBSLevelStyle(m_WBS(WBSItem))

 Response.Write "<td class=RowNum>" & WBSItem & "</td>"

 Response.Write "<td nowrap=true " & "class=" & WBSLevelStyle & ">" & m_WBS(WBSItem) & "</td>"

 Response.Write "<td>" & m_Codes(WBSItem) & "</td>"

 Response.Write "<td>" & m_Types(WBSItem) & "</td>"

 ' Write total column

 If (m_Types(WBSItem) = "INPUT") Then

 CellID = WBSItem & "_" & m_Years.Count + 1

 CellValue = m_YearValues(WBSItem, m_Years.Count + 1)

 ' If the current cell is an override, then

 ' change the tag to be an override type. Also,

 ' leave the trailing * in the INPUT tag value

 ' string so the browser can set it to be an override

 ' field type and then remove the *.

 If (Right(CellValue, 1) = "*") Then

 CellType = "OV"

 OverrideImage = "ov.gif"

 Else

 CellType = "NM"

 OverrideImage = "nm.gif"

 End If

 InputTagStr = "<td align=right>" & _

 "" & _

 "<IMG border=0 align=absBottom name=" & _

 CellID & _

 " src=""" & OverrideImage & """ >" & _

 "" & _

 "<input class=" & _

 CellType & _

 " id=""" & _

 CellID & _

 """ name=""" & _

 CellID & _

 """ value=" & _

 CellValue & _

 " border=0 align=right size=11>" & _

 "</td>"

 Else

 InputTagStr = "<td align=right>" & m_YearValues(WBSItem, m_Years.Count + 1) & "</td>"

 End If

 Response.Write InputTagStr

 ' Write all year columns

 For YearNum = 1 To m_Years.Count

 If (m_Types(WBSItem) = "INPUT") Then

 CellID = WBSItem & "_" & YearNum

 CellValue = m_YearValues(WBSItem, YearNum)

 ' If the current cell is an override, then

 ' change the tag to be an override type. Also,

 ' leave the trailing * in the INPUT tag value

 ' string so the browser can set it to be an override

 ' field type and then remove the *.

 If (Right(CellValue, 1) = "*") Then

 CellType = "OV"

 OverrideImage = "ov.gif"

 Else

 CellType = "NM"

 OverrideImage = "nm.gif"

 End If

 InputTagStr = "<td align=right>" & _

 "" & _

 "<IMG border=0 align=absBottom name=" & _

 CellID & _

 " src=""" & OverrideImage & """ >" & _

 "" & _

 "<input class=" & _

 CellType & _

 " id=""" & _

 CellID & _

 """ name=""" & _

 CellID & _

 """ value=" & _

 CellValue & _

 " border=0 align=right size=11>" & _

 "</td>"

 Else

 InputTagStr = "<td align=right>" & m_YearValues(WBSItem, YearNum) & "</td>"

 End If

 Response.Write InputTagStr

 Next YearNum

 Response.Write "</tr>"

 Next WBSItem

 End If

End Sub

DrawColumnTitles()

'

' Draws HTML table column titles for what-if or time-phased sheet

'

Private Sub DrawColumnTitles()

 Dim ColumnIndex As Long

 ‘ Write static column titles (e.g., Row Number, WBS, Code Type)

 Response.Write "<tr>"

 Response.Write "<th class=ColHeader width=" & ROWNUM_COLWIDTH & "> </th>"

 Response.Write "<th class=ColHeader width=" & m_WBSColumnWidth & ">WBS</th>"

 Response.Write "<th class=ColHeader width=" & CODES_COLWIDTH & ">Code</th>"

 Response.Write "<th class=ColHeader width=" & TYPES_COLWIDTH & ">Type</th>"

 ‘ Draw what if case column titles

 If (m_IsTimePhased = False) Then

 …

 ‘ Draw time-phased year column titles

 Else

 For ColumnIndex = 1 To m_Cases.Count

 Response.Write "<th class=DataColHeader width=" & CASE_COLWIDTH & ">" & m_Cases(ColumnIndex).Title & "</th>"

 Next ColumnIndex

 End If

 Response.Write "</tr>"

End Sub

2.5 Opening a Model

2.5.1 Description

This feature opens the specified encrypted ACE session file (.ACZ) stored in a KnWS folder into the model component. It loads all model information and data into data structures so other procedures (e.g., DrawModelSheet(), DrawColumnTitles(), etc.) can utilize the active model data.

2.5.2 Implementation Details

The ACE Automation API Component was required to implement this functionality. The API allows an ACE session file to be opened. Once opened, all data and other model information can be accessed through further API calls against the opened model object. The following API procedures and properties were used to accomplish the model open functionality:

FileOpen() – Opens the specified ACE session file and initializes component with model data.

GetFilterSize() – Determines the number of rows in the session that contain values in a certain column. The ACE Exec Code column is specified to determine how many ACE Executive rows are in the session.

BaseYear, Units, Currency – Used to retrieve the ACE model session options values.

GetFilter() – Retrieves an array of Row Ids corresponding to all ACEIT Executive rows in the session. This array is then provided to GetData() to retrieve arrays containing only the items specified by the Row Ids.

GetData() – Retrieves each specified column of data. In this case, the following columns are retrieved: WBS, ACE Exec Type and ACE Exec Code

2.5.3 Code Snippet

The VB procedure responsible for opening an ACE model and populating the model data arrays is OpenModel().

OpenModel()

'

‘ Opens an ACE model and displays what-if or time-phased sheet

‘

'Public Sub OpenModel(ByVal ModelFilename As String, ByVal IsTimePhased As Boolean, ByVal KnWSFolderPath As String)

 Const PROCEDURE_NAME As String = MODULE_NAME & ":" & "OpenModel"

 Dim ACEServer As New ACTIVEEXECSERVERLib.AES

 Dim Status As Long

 Dim RowIDs As Variant

 Dim WBSItem As Long

 Dim YearNum As Long

 Dim Year As Long

 Dim CaseNum As Long

 Dim EmbeddedACZFile As String

 On Error GoTo Error_Handler

 ' Path for ACE component to create tempo files

 m_ModelsTempDir = Application("TempModelPath")

 ' Find out if passed in model is an .ACZ (new) or an .AES(existing)

 m_IsNewModel = DetermineModelType(ModelFilename)

 ' Set model filename (could be .ACZ or .AES)

 m_ModelFilename = ModelFilename

 m_ModelPhysicalPath = GetFilePath(m_ModelFilename)

 m_KnWSFolderPath = KnWSFolderPath

 'm_AESEmbeddedSessionFilename = GetFileName(GetFromScenarioFile(m_ModelFilename, ACZ_NAME))

 ' If this is a new model (i.e., an .ACZ session file), then...

 If (m_IsNewModel = True) Then

 ' Caller specifies if it should be opened what-if or time-phased

 m_IsTimePhased = IsTimePhased

 ' Make a temporary copy of the .ACZ file

 m_TempSessionFilename = CreateTempSessionfile(m_ModelFilename)

 m_AESEmbeddedSessionFilename = m_ModelFilename

 ' Otherwise, it must be an existing .AES file

 Else

 ' Open the .AES file to grab the .ACZ filename and to determine

 ' if it is what-if or time-phased

 m_AESEmbeddedSessionFilename = GetFileName(GetFromScenarioFile(m_ModelFilename, ACZ_NAME))

 m_AESEmbeddedSessionFilename = m_ModelPhysicalPath & m_AESEmbeddedSessionFilename

 If (GetFromScenarioFile(m_ModelFilename, FILE_TYPE) = excFileTimePhased) Then

 m_IsTimePhased = True

 Else

 m_IsTimePhased = False

 End If

 ' Make a temporary copy of the .ACZ file

 m_TempSessionFilename = CreateTempSessionfile(m_AESEmbeddedSessionFilename)

 End If

 ' Tell ACE server where to put temporary files

 ACEServer.TempDir = m_ModelsTempDir

 ' What-If

 If (m_IsTimePhased = False) Then

 ' Open .ACZ session file

 Status = ACEServer.FileOpen(m_TempSessionFilename, "******")

 If (Status <> 1) Then Err.Raise modelErrCannotOpenSessionFile, , "Could not open session file '" & ModelFilename & "'"

 ' Get number of WBS items with an ACE exec code.

 m_WBSLength = ACEServer.GetFilterSize(ACEServer.GetColumnID("ACEEXEC CODE"))

 ReDim RowIDs(1 To m_WBSLength) As Long

 ' Read case inputs from scenario file

 If (m_IsNewModel = False) Then

 ' **SCENARIO**

 ' - Call AddCase for each case title

 ' - Case value inputs ==> m_CaseValues(i,c)

 ' - Any overrides add to m_Overrides collection

 ReadScenarioFile m_ModelFilename

 ' Otherwise, must be a new session. No inputs to read.

 Else

 ' Get model properties from ACE session

 m_BaseYear = ACEServer.BaseYear

 m_Units = ACEServer.Units

 m_Currency = ACEServer.Currency

 ' Add one blank case

 LoadCases

 ' Dimension arrays

 SetModelDimensions

 ' Set new case column empty

 For WBSItem = 1 To m_WBSLength

 For CaseNum = 1 To m_Cases.Count

 m_CaseValues(WBSItem, CaseNum) = " "

 Next CaseNum

 Next WBSItem

 End If

 LoadCaseMap

 ' Load WBS, Code and Type columns from ACE component.

 Status = ACEServer.GetFilter(ACEServer.GetColumnID("ACEEXEC CODE"), RowIDs)

 Status = ACEServer.GetData(ACEServer.GetColumnID("WBS/CES Description"), m_WBS, RowIDs)

 Status = ACEServer.GetData(ACEServer.GetColumnID("ACEEXEC CODE"), m_Codes, RowIDs)

 Status = ACEServer.GetData(ACEServer.GetColumnID("ACEEXEC TYPE"), m_Types, RowIDs)

 UpdateWBSColumnWidth

 Set ACEServer = Nothing

 ' Open model as a Time-phased sheet

 Else

 …

 End If

Exit_Sub:

 Exit Sub

Error_Handler:

 Err.Raise Err, AppendErrorSource(Err, PROCEDURE_NAME), Err.Description

End Sub

2.6 Calculating What-If Cases

2.6.1 Description

This feature performs a what-if calculation on the active model. It operates on the model data initially loaded from the session file as well as from any sensitivity case override input values the user has specified. Unlike the ACEIT Executive, all sensitivity cases are calculated rather than having the ability to selectively determine which case or cases are to be calculated.

2.6.2 Implementation Details

The ACE Automation API Component was also required to implement the what-if calculation functionality. Much like the Open Model functionality, the ACE session data is loaded into data structures from the model file. In addition to storing this session data, the input overrides specified on the what-if page form are stored and passed on to the ACE model component for each case. Each case is calculated using the override inputs. The calculated results are stored in results arrays and then written back to the what-if page by DrawModelSheet(). In addition to the those used by the Open Model feature, the following additional API procedures were used to accomplish the calculate what-if case functionality:

CopyCaseOverrides() – Blanks out sensitivity case column for next case calculation.

SetCaseOverrides() – Copies array of overrides into ACE component so next calculation will use override values rather than default session values in the model estimate.

Evaluate() – Calculates the model estimate.

GetTotals() – Gets a copy of the estimate results array.

2.6.3 Code Snippet

The VB procedure responsible for performing a what-if calculation on the active ACE model is CalculateModel() .

'

' Calculates an ACE model and displays what-if or time-phased sheet

'

Public Sub CalculateModel()

 Const PROCEDURE_NAME As String = MODULE_NAME & ":" & "CalculateModel"

 Dim ACEServer As New ACTIVEEXECSERVERLib.AES

 Dim Status As Long

 Dim RowIDs As Variant

 Dim YearNum As Long

 Dim WBSItem As Long

 Dim CaseValues As Variant

 Dim Overrides As Variant

 Dim CaseNum As Long

 Dim YearValues As Variant

 Dim Year As Long

 Dim FYOverrides As Variant

 On Error GoTo Error_Handler

 ' Path for ACE component to create tempo files

 m_ModelsTempDir = Application("TempModelPath")

 ' Get Baseyear, units, etc.

 GetModelPropertiesFromForm

 ' Tell ACE server where to put temporary files

 ACEServer.TempDir = m_ModelsTempDir

 ' What-If Calculate

 If (m_IsTimePhased = False) Then

 ' Open .ACZ session file

 Status = ACEServer.FileOpen(m_TempSessionFilename, "*****")

 ' Get number of WBS items with an ACE exec code.

 m_WBSLength = ACEServer.GetFilterSize(ACEServer.GetColumnID("ACEEXEC CODE"))

 ReDim RowIDs(1 To m_WBSLength) As Long

 ' Have ACE use the user specified model properties

 ACEServer.BaseYear = m_BaseYear

 ACEServer.Units = m_Units

 ACEServer.Currency = m_Currency

 ' Add cases from posted hidden form field case list

 LoadCases

 LoadCaseMap

 ' Dimension arrays

 SetModelDimensions

 ' Load any case overrides specified in posted INPUT tags

 LoadCaseOverridesFromForm

 ' Load WBS, Code and Type columns from ACE component.

 Status = ACEServer.GetFilter(ACEServer.GetColumnID("ACEEXEC CODE"), RowIDs)

 Status = ACEServer.GetData(ACEServer.GetColumnID("WBS/CES Description"), m_WBS, RowIDs)

 Status = ACEServer.GetData(ACEServer.GetColumnID("ACEEXEC CODE"), m_Codes, RowIDs)

 Status = ACEServer.GetData(ACEServer.GetColumnID("ACEEXEC TYPE"), m_Types, RowIDs)

 UpdateWBSColumnWidth

 ' Dimension case results values and overrides array

 ReDim CaseValues(1 To m_WBSLength) As String

 ReDim Overrides(1 To m_WBSLength) As String

 ' Calculate each case

 For CaseNum = 1 To m_Cases.Count

 ' Clear ACE case column

 ACEServer.CopyCaseOverrides ""

 ' Fill overrides array from form posted INPUT field values

' GetCaseOverrides Overrides, m_Cases(CaseNum).ID

 GetCaseOverrides Overrides, CaseNum

 ' Pass overrides to ACE component and calculate the case.

 Status = ACEServer.SetCaseOverrides(Overrides, RowIDs)

 Status = ACEServer.Evaluate(0)

 ' Get case column results array

 ACEServer.GetTotals CaseValues, RowIDs

 ' Transfer case column result to corresponding

 ' case column in 2-dim array for later display.

 For WBSItem = 1 To m_WBSLength

 ' If row is a comment or has a zero result, display blank in the cell.

 If (m_Codes(WBSItem) = "*" Or CaseValues(WBSItem) = "0.000000") Then

 m_CaseValues(WBSItem, CaseNum) = " "

 ' Otherwise, round the case values to default precision

 ' before storing.

 Else

 m_CaseValues(WBSItem, CaseNum) = CStr(Round(CDbl(CaseValues(WBSItem)), m_Precision))

 End If

 Next WBSItem

 Next CaseNum

 RestoreCaseOverrides

 Set ACEServer = Nothing

 ' Time-phased calculation

 Else

 …

 End If

Exit_Sub:

 Exit Sub

Error_Handler:

 Err.Raise Err, AppendErrorSource(Err, PROCEDURE_NAME), Err.Description

End Sub

2.7 Calculating Time-Phased Results

2.7.1 Description

This feature performs a time-phased calculation on the active model. It operates on the model data initially loaded from the session file as well as from any fiscal year or total override input values the user has specified. The user may determine the inflation appropriate for the results by specifying BY for Base Year phased results and TY for Then Year phased results.

2.7.2 Implementation Details

Once again the ACE Automation API Component was required to implement the time-phased calculation functionality. Much like the Open Model functionality, the ACE session data is loaded into data structures from the model file. In addition to storing this session data, the fiscal year input overrides specified on the time-phased page form are stored and passed on to the ACE model component for each fiscal year. With all fiscal year override inputs in place, a time-phased calculation is performed. Depending on the user’s inflation selection, either Then Year or Base Year results will be generated. The calculated results are stored in results arrays and then written back to the time-phased page by DrawModelSheet(). In addition to the those used by the Open Model feature, the following additional API procedures and properties were used to accomplish the calculate time-phased case functionality:

Evaluate() – Calculates the model estimate.

GetFYResults() – Gets a copy of the estimate results array for each fiscal year.

GetTotals() – Get array of estimate results for total column

2.7.3 Code Snippet

The VB procedure responsible for performing a time-phased calculation on the active ACE model is CalculateModel() .

'

' Calculates an ACE model and displays what-if or time-phased sheet

'

Public Sub CalculateModel()

 Const PROCEDURE_NAME As String = MODULE_NAME & ":" & "CalculateModel"

 Dim ACEServer As New ACTIVEEXECSERVERLib.AES

 Dim Status As Long

 Dim RowIDs As Variant

 Dim YearNum As Long

 Dim WBSItem As Long

 Dim CaseValues As Variant

 Dim Overrides As Variant

 Dim CaseNum As Long

 Dim YearValues As Variant

 Dim Year As Long

 Dim FYOverrides As Variant

 On Error GoTo Error_Handler

 ' Path for ACE component to create tempo files

 m_ModelsTempDir = Application("TempModelPath")

 ' Get Baseyear, units, etc.

 GetModelPropertiesFromForm

 ' Tell ACE server where to put temporary files

 ACEServer.TempDir = m_ModelsTempDir

 ' What-If Calculate

 If (m_IsTimePhased = False) Then

 …

 ' Time-phased calculation

 Else

 ' Open .ACZ session file

 Status = ACEServer.FileOpen(m_TempSessionFilename, "*****")

 ' Get number of WBS items with an ACE exec code.

 m_WBSLength = ACEServer.GetFilterSize(ACEServer.GetColumnID("ACEEXEC CODE"))

 ReDim RowIDs(1 To m_WBSLength) As Long

 ' Read .ACZ file into ACE server

 m_FirstYear = ACEServer.FirstYear

 m_LastYear = ACEServer.LastYear

 ' Have ACE use the user specified model properties

 ACEServer.BaseYear = m_BaseYear

 ACEServer.Units = m_Units

 ACEServer.Currency = m_Currency

 ' Add all years from session

 For Year = m_FirstYear To m_LastYear

 AddYear Year

 Next Year

 ReDim YearValues(1 To m_WBSLength) As String

 ' Dimension arrays

 SetModelDimensions

 ' Load any year overrides specified in posted INPUT tags

 LoadYearOverridesFromForm

 ' Load WBS, Code and Type columns from ACE component.

 Status = ACEServer.GetFilter(ACEServer.GetColumnID("ACEEXEC CODE"), RowIDs)

 Status = ACEServer.GetData(ACEServer.GetColumnID("WBS/CES Description"), m_WBS, RowIDs)

 Status = ACEServer.GetData(ACEServer.GetColumnID("ACEEXEC CODE"), m_Codes, RowIDs)

 Status = ACEServer.GetData(ACEServer.GetColumnID("ACEEXEC TYPE"), m_Types, RowIDs)

 UpdateWBSColumnWidth

 ' Clear ACE case column

 ACEServer.CopyCaseOverrides ""

 ReDim FYOverrides(1 To m_WBSLength) As String

 ' Set overrides for each year.

 Year = m_FirstYear

 For YearNum = 1 To m_Years.Count

 ' Fill overrides array from form posted INPUT field values

 GetYearOverrides FYOverrides, YearNum

 Status = ACEServer.SetFYOverrides(CInt(Year), FYOverrides, RowIDs)

 Year = Year + 1

 Next YearNum

 ' Set overrides for total column

 GetYearOverrides FYOverrides, m_Years.Count + 1

 Status = ACEServer.SetCaseOverrides(FYOverrides, RowIDs)

 ' Calculate BY or TY

 If (m_IsThenYearTimePhased = True) Then

 Status = ACEServer.Evaluate(1)

 Else

 Status = ACEServer.Evaluate(0)

 End If

 ' Transfer year column result to corresponding

 ' year column in 2-dim array for later display.

 Year = m_FirstYear

 For YearNum = 1 To m_Years.Count

 ' Get year result column.

 Status = ACEServer.GetFYResults(CInt(Year), YearValues, RowIDs)

 ' Copy to 2-d array of year results

 For WBSItem = 1 To m_WBSLength

 ' If row is a comment or has a zero result, display blank in the cell.

 If (m_Codes(WBSItem) = "*" Or YearValues(WBSItem) = "0.000000") Then

 m_YearValues(WBSItem, YearNum) = " "

 ' Otherwise, round the case values to default precision

 ' before storing.

 Else

 m_YearValues(WBSItem, YearNum) = CStr(Round(CDbl(YearValues(WBSItem)), m_Precision))

 End If

 Next WBSItem

 Year = Year + 1

 Next YearNum

 ' Peform same thing for total column

 ' Fetch calculated results, transfer to last

 ' position in 2-d array.

 Status = ACEServer.GetTotals(YearValues, RowIDs)

 For WBSItem = 1 To m_WBSLength

 If (m_Codes(WBSItem) = "*" Or YearValues(WBSItem) = "0.000000") Then

 m_YearValues(WBSItem, m_Years.Count + 1) = " "

 Else

 m_YearValues(WBSItem, m_Years.Count + 1) = CStr(Round(CDbl(YearValues(WBSItem)), m_Precision))

 End If

 Next WBSItem

 RestoreYearOverrides

 Set ACEServer = Nothing

 End If

Exit_Sub:

 Exit Sub

Error_Handler:

 Err.Raise Err, AppendErrorSource(Err, PROCEDURE_NAME), Err.Description

End Sub

2.8 Specifying What-If and Time-Phased Input Overrides

2.8.1 Description

This feature allows the user to specify input overrides on the what-if or time-phased model page. Fiscal year values for a time-phased page or sensitivity case values for a what-if page. To specify an override, the user must click on the override button (see pencil graphic in Figure 1) adjacent to the input cell to be changed. Clicking on that button enables the edit field for that input so the user can then enter the new override value. It also identifies that input as an override with the software so subsequent calculations will process using the override value.

2.8.2 Implementation Details

Due to the limitations of the browser programming model, this feature entailed the most complex portion of the application. When the user clicks on the override button , the tgl or toggle function is called to enable overriding of the adjacent cell (the function name tgl was used rather that something less cryptic to reduce the number of characters. For a given model, potentially thousands of HTML tags could contain this name so it needed to be short in length).

The tgl function then determines whether the selected item is already an override or not. If it is not an override, the following happens: 1) the dim pencil image is swapped for a bright one with a blue underline and a border is drawn around the input field to show that the cell can be edited. 2) The tooltip text is changed to “Set as Output” 3) the form field override attribute is set to true (for later processing as an override). If the value being toggled is already an override, then the reverse happens and the cell is disabled and set to not be an override. As the user goes from cell to cell enabling/disabling overrides, the JavaScript tgl function keeps track of which items are overrides.

When the user presses the calculate button, the TagOverrides() function is called before posting the form to the server. It traverses the collection of posted form elements and determines which items are overrides based on the override attribute. An asterisk is appended to each field value that has its override attribute set to true. This is done to communicate the override state of values to the server component. When the server component calculates the model, it has the override values in hand ready to be specified for the ACE component.

In addition to sending override information to the server, override information must be sent back to the browser so the state of the what-if and time-phased pages will maintain the state of override images, values and settings between subsequent calculations of the same model page. To retain the state, the SetOverrides() function is called. It traverses the form collection and sets the override state based on the cell INPUT tag override attributes.

2.8.3 Code Snippet

The following JavaScript functions provide the input override toggling functionality from the ModelRun.asp Active Server Page for both the what-if and time-phased pages:

// Javascript page globals

var gOverrideGIF = "ov.gif";;

var gNormalGIF = "nm.gif";

var INPUT_MSG = "Set as Input";

var OUTPUT_MSG = "Set as Output";

// Toggle state of current input field to be an override

// or not.

function tgl(VarID)

{

 // If it is not an override, then make it one.

 if (document.ModelForm(VarID).override == null ||

 document.ModelForm(VarID).override == false)

 {

 // set the override attribute and change the image.

 document.ModelForm(VarID).override = true;

 document.images(VarID).src = gOverrideGIF;

 document.images(VarID).title = OUTPUT_MSG;

 document.ModelForm(VarID).className = "OV";

 document.ModelForm(VarID).focus();

 }

 else

 {

 document.ModelForm(VarID).override = false;

 document.images(VarID).src = gNormalGIF;

 document.images(VarID).title = INPUT_MSG;

 document.ModelForm(VarID).className = "NM";

 }

}

// Adds * to any input tags that have been selected

// as overrides. This is used to figure out which

// input tags are overrides once they have been posted

// to the server.

function TagOverrides()

{

 var OverrideValue;

 for (i = 0;i < document.ModelForm.elements.length;i++)

 {

 var element = document.ModelForm.elements[i];

 if (element.type == "text" && element.override == true)

 {

 OverrideValue = parseFloat(element.value);

 if (isNaN(OverrideValue))

 {

 element.value = "";

 element.override = false;

 }

 else

 element.value = OverrideValue + "*";

 }

 }

}

// Finds any input tags that have a trailing * on their value.

// Those having a star are flagged as being override elements

// in the browser so the image and input field states are set

// correctly.

function SetOverrides()

{

 var CellValue = new String();

 var StarPos;

 for (i = 0;i < document.ModelForm.elements.length;i++)

 {

 var element = document.ModelForm.elements[i];

 CellValue = element.value;

 StarPos = CellValue.indexOf("*");

 // The BaseYear field is the only text INPUT tag that is not

 // for overriding inputs. Any other text INPUT tags should be

 // excluded here as well.

 if (element.type == "text" && element.name != "BaseYear")

 {

 if (StarPos >= 0)

 {

 element.override = true;

 element.value = CellValue.slice(0, StarPos);

 document.images(element.name).title = OUTPUT_MSG;

 }

 else

 document.images(element.name).title = INPUT_MSG;

 }

 }

}

2.9 Adding/Deleting What-If Cases

2.9.1 Description

This feature allows the user to add (Figure 3) or delete (Figure 4) sensitivity case columns from the what-if model page.

[image: image5.png]Madel: 40ExecDema acz

rosoft Internet Explorer

units: [K =] curreney: [$2

wes
1 Recurring Production
2 Manufacturing

3 Antenna

4 Integration

5 System engr./Prog. Mamt
6

7

8

o

INPUT VARIABLES
10 antenna Aperture (sq ft)

11 antenna Buy Quantity
12 antenna Learning Slope

Colcuote. |_add Gose..| el case ,_| sove. |

Code Type Casel casez
Recurrind, ouTeuT 4556.75 4556.75

Iore P e o

:
Al 3 wht-i Case - Microsolt Internet EDUISII=TF3] 7

In 4
S| New Case Name: [Casef| 6
- OK | | Cancel |

a b
suvQ weur w /] 10

s weur 7 w0/ w0

.S

Cases
4556.75
33261
2892.26
433.84
1230.66

200
10
50

Figure 3 – Adding a new sensitivity case

[image: image6.png]T Model Run - Microsoft Internet Explorer z
Model: 40ExecDemo.acz

| |] 3t et Coseiecos GO

units: [KIE] ~ currency: [S Select case(s) to be deleted
wes lCase2 Cases Cas:
Recurring Production els 4556.75 455675 .
Manufacturing 3326.1 3326.1
Antenna Cancel 2892.26 2892.26
Integration R 433,84 433,84
123066 123066

1
2

3

4

5 System Engr/Prag. Mamt

5 Select All
7

L SelectNone

9 INPUT VARIABLES

10 antenna Aperture (sq ft)

200 200

0 7 0 7
12 Antenna Learming Siope

w0/ w0/
. " =

11 antenna Buy Quantity

Figure 4 – Deleting sensitivity cases

2.9.2 Implementation Details

In order to keep track of all cases associated with a particular model, HTML hidden form fields and Javascript were used to maintain an internal list of the number of cases and the case titles. As cases are added or deleted from a what-if page, the active list of cases and their titles are maintained between browser and server.

When the user presses the Add Case button, the ModelAddCase_OnOK() function is called. The new case title is added to the hidden field list and then posted to the server. When the updated page is displayed the new case column is displayed and the hidden form field list is updated with the new case column ID and title.

Pressing Del Case, calls ModelDeleteCase_OnOK() which causes a similar sequence of events. The selected case is removed from the hidden form field list before posting to the server. Upon return to the browser, the case column is no longer in the web page and has been removed from the hidden form field list of cases.

The state of the case list between subsequent additions and deletions is maintained by LoadCases() when returning to the browser and SaveCases() when posting to the server.

2.9.3 Code Snippet

The following JavaScript functions provide the case management functions that enable adding, deleting and renaming of sensitivity case columns from the active what-if page:

// Delete an array element

function ArraySplice(ind, cnt, TheArray)

{

removedElements = TheArray.slice(ind,ind+cnt);

endArray = TheArray.slice(ind+cnt);

TheArray.length = ind;

for(i=0;i<endArray.length;i++)

{

 TheArray[TheArray.length] = endArray[i];

}

}

// Calculate a case

function OnCalculate()

{

WaitCursor(true);

SaveCases();

document.ModelForm.PageAction.value = "Calculate";

document.ModelForm.submit();

}

// Add a new case

function OnAddCase()

{

ShowPopupWindow("ModelAddWhatIfCase.asp", "AddCase", 110, 325);

}

// Called by popup to add a new case

function ModelAddCase_OnOK(CaseToBeAdded)

{

WaitCursor(true);

AddCase(CaseToBeAdded);

// Update hidden case fields before going to server.

SaveCases();

document.ModelForm.PageAction.value = "Calculate";

ModelForm.submit();

}

// Change a case title

function OnChangeCaseTitle(CaseId, Title)

{

var Url = "ModelChangeCaseTitle.asp?CaseId=" + CaseId + "&Title=" + Title ;

ShowPopupWindow(Url, "ChangeCase", 110, 325);

}

// Called by popup to add a new case

function ModelChangeCase_OnOK(CaseId, NewCaseTitle)

{

WaitCursor(true);

ChangeCase(CaseId, NewCaseTitle);

// Update hidden case fields before going to server.

SaveCases();

document.ModelForm.PageAction.value = "Calculate";

ModelForm.submit();

}

// Return the number of cases

function GetNumCases()

{

return gCaseIDsArray.length;

}

// Get all case titles as a pipe-delimited string

function GetCaseList()

{

return gCaseTitlesArray.join("|");

}

// Delete a case

function OnDeleteCase()

{

if (GetNumCases() > 1)

ShowPopupWindow("ModelDeleteWhatIfCase.asp", "DeleteCase", 270, 300);

else

alert("Cannot delete last case.");

}

// Called by popup to actually delete the selected cases.

function ModelDeleteCase_OnOK(CaseNumbersToBeDeleted)

{

WaitCursor(true);

var CaseNumbersString = new String(CaseNumbersToBeDeleted);

var CaseNumbersArray = CaseNumbersString.split("|");

// Reverse order of case numbers so no array shifting will

// occur during case deletion.

CaseNumbersArray.reverse();

// Delete cases from client arrays

for (DelCaseNum = 0;DelCaseNum < CaseNumbersArray.length;DelCaseNum++)

DeleteCase(parseInt(CaseNumbersArray[DelCaseNum]));

// Update hidden case fields before going to server.

SaveCases();

document.ModelForm.PageAction.value = "Calculate";

ModelForm.submit();

}

// Load client case arrays from hidden case fields

function LoadCases()

{

var CaseListString = new String(document.ModelForm.CaseList.value);

var TitleIDPairs = CaseListString.split("|");

var CasePair = new String();

var EqualsPos;

if (TitleIDPairs == CaseListString)

{

TitleIDPairs = new Array();

TitleIDPairs[0] = "1=Case1";

}

for (CaseNum = 0;CaseNum < TitleIDPairs.length;CaseNum++)

{

CasePair = TitleIDPairs[CaseNum];

EqualsPos = CasePair.indexOf("=");

gCaseIDsArray[CaseNum] = CasePair.substr(0, EqualsPos);

gCaseTitlesArray[CaseNum] = CasePair.substr(EqualsPos + 1, CasePair.length - EqualsPos - 1);

}

gNextCaseID = document.ModelForm.NextCaseID.value;

// Set any input fields that have trailing "*" in their value

// as "Override" element types. Then remove the "*" so it

// will not show up in the actual input field.

SetOverrides();

}

// Save client case arrays back to hidden case fields

function SaveCases()

{

var TitleIDPairs = new Array();

for (CaseNum = 0;CaseNum < gCaseIDsArray.length;CaseNum++)

TitleIDPairs[CaseNum] = gCaseIDsArray[CaseNum] + "=" + gCaseTitlesArray[CaseNum];

document.ModelForm.NumCases.value = GetNumCases();

document.ModelForm.CaseList.value = TitleIDPairs.join("|");

document.ModelForm.NextCaseID.value = gNextCaseID;

// Add a '*' to any override values before posting to server

// so server component call tell which input fields contain

// overrides.

TagOverrides();

}

// Add case to client case arrays

function AddCase(NewCaseTitle)

{

var NewCaseID = GetNextCaseID();

gCaseTitlesArray[gCaseTitlesArray.length] = NewCaseTitle;

gCaseIDsArray[gCaseIDsArray.length] = NewCaseID;

}

// Add case to client case arrays

function ChangeCase(CaseId, NewCaseTitle)

{

gCaseTitlesArray[CaseId-1] = NewCaseTitle ;

}

// Remove case from client case arrays

function DeleteCase(CaseNumber)

{

ArraySplice(CaseNumber, 1, gCaseTitlesArray);

ArraySplice(CaseNumber, 1, gCaseIDsArray);

}

// Get the ID to use for the next new case.

function GetNextCaseID()

{

gNextCaseID = parseInt(gNextCaseID) + 1;

return gNextCaseID;

}

2.10 Saving Model Inputs

2.10.1 Description

After subsequent calculations, additions and deletions of cases, overriding inputs, etc., this feature allows the user to save the state of the model inputs to a file stored in a KnWS folder (.AES scenario file). Once saved, the file can be opened at a later time to display the what-if or time-phased inputs, cases, etc. just as they were when the model was saved.

2.10.2 Implementation Details

The .AES file format and Visual Basic code from the ACEIT Executive were used to allow what-if and time-phased inputs to be saved. The VB procedure WriteScenarioFile() is called to save the active model web page to a scenario file in the current KnWS folder. The VB procedure ReadScenarioFile() is called to open a saved scenario file into a what-if or time-phased web page.

3. Glossary

Defines all the terms necessary to properly interpret this document including acronyms and abbreviations.

	Term
	Description

	KnWS
	Knowledge Web Services Knowledge Management System

	ACE Automation API
	COM Component for creating automated ACE model solutions

	.ACZ File
	Encrypted ACE session model file

	SOAP
	Simple Object Access Protocol

	HTTP
	Hyper Text Transfer Protocol

	.AES File
	ACEIT Executive Scenario file

	.NET
	New Distributed Microsoft Development Technology

Appendix A: ACE API Reference

4. Overview

The ACE OLE Automation API is a set of functions and attributes that can be called on the ACE32.EXE (version 4.0b or higher) or ActiveExecServer.dll (version 4.1 or higher) to load sessions, adjust inputs, modify session options, calculate, access results, and modify sheet contents. All calls in these two executables have the same behavior, except where noted. Programmers should refrain from using antiquated calls (introduced in ACE32.EXE prior to version 4.0b), as they may be removed from the product in some future release. Some antiquated calls never fully worked in the ActiveExecServer (AES), yet another reason to avoid using them.

ACE expects an WinACE session file format (.acw extension). AES expects a file format of .ace or .acz. The .ace file format requires a supporting .prm file and an optional .apn file that contains the inflation tables. ACE can create new session files and save them to disk. AES can only read existing sessions and has no capability to write files.

5. 4.1 Interface Update

5.1 Overview

In order to consolidate the interface and support a more generalized interaction for calculation, this specification proposes new OLE API calls to perform overrides and calculations. The primary objectives for the new behavior are 1) sufficient support for new and existing client applications, 2) a single calculation interface, 3) preservation of sensitivity case and yearly data during normal use, and 4) minimization of rework required for existing client applications to use new API.

5.1.1 New Behavior

The means for calculating a session will be broken into five distinct parts: Preparing a session, applying overrides, checking syntax, evaluating the session, and retrieving results. Here is a summary of new calculation behavior.

· ACE will create a new, blank “Executive” case in the session when the session loads; it is always used for all calculations.

· ACE will internally track if syntax check is required; if syntax check is required when Evaluate() is called, then ACE performs syntax check automatically (without RI$K).

· The client can copy case overrides into the “Executive” case column from another case and/or manually override the “Executive” case.

· The overrides can be applied before or after the syntax check without requiring a new syntax check.

· The client can set yearly overrides and reset them to original session defaults at any time. They will be applied to the results during the next Evalutate() call.

· The new calls for manipulating overrides work with row filter array, making calls column-oriented. (The values in the row filter are simply unique identifiers and should not be confused with the actual row numbers in the session.)

· The client no longer needs to know case name to set case (total) overrides.

· The client no longer uses SetFYColumn() or SetDataInColumn() to set overrides.

· Nearly all old-style “Exec” API calls have been deprecated.

· Yearly input overrides will continue to be treated as “sunk” costs instead of genuine input values.

5.1.2 Issues

Several functional issues have been resolved. They are listed here.

· GetErrorListSize() and GetErrorList() were not implemented for the 4.1 release.

· Overriding FY Inputs for TY calculation can yield unexpected results (e.g., overriding values for BY, TY, and SY phasing methods). Side note: Abandoning “sunk” FY inputs will eliminate the option to change FY Inputs on a per-case basis after syntax check is performed, forcing all FY overrides to be applied before syntax check, for this reason, we have stuck with “sunk” behavior.

· Changing RI$K iterations after evaluating will change the API’s return value but not the dimension of the related RI$K results contained within the server. This can cause a memory fault. For this reason, users are urged to change the number of RI$K iterations as close to an anticipated Evaluate() call as possible in order to avoid such confusion.

5.2 Usage Details

5.2.1 Usage Outline

The new method for calculating results offers greater flexibility than the previous methods – both in overriding values and in resetting the session to a fresh, untarnished state. The following general method for applying overrides and calculating should satisfy all foreseeable needs. It is broken into 5 steps, most of which are optional: Preparing a session, applying overrides, checking syntax, evaluating the session, and retrieving results. A different subset of steps can be called depending on the desired outcome.

5.2.1.1.1 Preparing A Session:

1.1 Open Session File.

1.1.1 Call FileOpen(…) – The server will find ACEEXEC columns and add a new “Exec Calc” case column to the session. Please note: A session must contain the category columns labeled “ACEEXEC CODE” and “ACEEXEC TYPE”, even if they are not being used.

1.1.2 … OR, Call FileOpen(…) – The ACE server will create a new, blank session.

1.2 Get Row Filter.

1.2.1 Build a row filter using GetFilterSize(…) and GetFilter(…) with the fixed column ID that you plan to use as your filter. Only references to non-empty cells are returned.

1.2.2 … OR, To filter on a category with a specific name, such as “ACEEXEC CODE” or “FADSS,” use the GetColumnID(…) call in conjunction with GetFilterSize(…) and GetFilter(…).

1.2.3 … OR, Call GetFilterSize(…) and GetFilter(…) with a column ID of 0 to receive a filter to all rows in the session.

1.2.4 [Optional] You may create any number of filter arrays as you wish. You may remove elements in the filter array or combine elements in two different filter arrays and use the combination to access sheet contents.

1.3 [Optional] Access Sheet Contents.

1.3.1 Call GetData(…) with a row filter and a column ID to access data in the desired column(s). Data received using the same row filter will be parallel. In other words, the same index will access the same row’s values.

1.3.2 Call SetData(…) with a row filter and a column ID to modify data in the desired column(s). You cannot undo any changes applied with SetData(…). If you wish to modify or clear FY inputs stored in the sheet cells, you will need to access the FY columns directly using SetData(…) to modify the sheet content.

1.4 [Optional] Retrieve Existing FY Inputs and Overrides.

1.4.1 FirstYear and LastYear attributes tell you the range of years contained in session.

1.4.2 Call GetFYOverrides(…) to retrieve overrides for a particular year. The values returned will be the overrides applied to the session using SetFYOverrides(…). It will not return values contained in the cells of FY columns.

1.4.3 NOTE: This step can be performed before or after step 3 (syntax check). It is useful only after step 2.1 (set FY overrides).

2 Applying Overrides:

2.1 [Optional] Set FY Overrides.

2.1.1 FirstYear and LastYear attributes tell you the range of years contained in session.

2.1.2 Call SetFYOverrides(…) to insert sunk costs into the session for the given year. A blank value for a row will clear any previous override set with this call; it will not clear the input value stored in the session sheet.

2.1.3 All overrides can be reset at any time using ResetFYOverrides().

2.1.4 NOTE: This step can be performed before or after step 3 (syntax check).

2.2 [Optional] Retrieve Existing Case Overrides.

2.2.1 NumCaseTitles attribute will return the number of cases in session.

2.2.2 Call GetCaseTitles(…) to retrieve a list of case titles contained in the session.

2.2.3 Call GetCaseOverrides(…) to get override values for a particular case title.

2.2.4 Change array of override values as once sees fit.

2.2.5 NOTE: This step can occur before or after step 3 (syntax check).

2.3 [Optional] Set Case (Total) Overrides.

2.3.1 Call CopyCaseOverrides (…) to copy overrides from an existing case title to the “Exec” case. This will reset all values in the “Exec” case to the selected case.

2.3.2 …OR, call ClearCaseOverrides() to erase existing values from “Exec” case column.

2.3.3 Call GetCaseOverrides(…) to retrieve the overrides for the desired case. You can manipulate these overrides and call SetCaseOverrides(…) to apply your changes to the “Exec” case.

2.3.4 Call SetCaseOverrides(…) to copy your own overrides into “Exec” case. Only the overrides that you provide (based on the row filter) will get modified. A blank value for a row will clear any override for that row, so remove row from filter to retain values that had been set by CopyCaseOverrides(…).

2.3.5 NOTE: This step can occur before or after step 3 (syntax check).

3 Checking Syntax:

3.1 [Optional] Syntax Check Session.

3.1.1 Call SyntaxCheck(…) to prepare the session for estimating a case. RI$K must be enabled at this point in order to generate RI$K results. NOTE: If any attributes are changed or “Set” calls are made to session, the syntax check will be invalidated and have to be performed again – the exception being calls to change overrides. Estimate(…) will call SyntaxCheck(…) implicitly with RI$K=False when settings are modified.

4 Evaluating The Session:

4.1 Calculate.

4.1.1 Call Estimate(…) to estimate the “Exec” case. If SyntaxCheck(…) has not yet been called or the engine state has been invalidated, then SyntaxCheck(…) will be performed automatically with RI$K=False. FY overrides (sunk costs) set with SetFYOverrides(…) are applied at this time.

5 Retrieving Results:

5.1 [Optional] Retrieve Results.

5.1.1 Call HasResults() to determine if the server contains results from a successful calculation.

5.1.2 Call GetFYResults(…) to retrieve calculation results for desired fiscal years.

5.1.3 Call GetTotals(…) to retrieve totals for each row.

5.1.4 Call other functions to retrieve data or reports, such as GetRisk(…) or SummarizeByCategory(…).

5.2 [Optional] Reset Overrides.

5.2.1 Call ClearCaseOverrides() to clear the “Exec” case column. All cells in column will be erased.

5.2.2 Call ResetFYOverrides() to clear all overrides applied using SetFYOverrides(…). Please note that the FY overrides that you set are retained for the next calculation unless you explicitly clear them.

6 Perform steps 2 through 5 as needed for all cases that need be calculated.

5.2.2 VB Usage Details

Allocating Variant Arrays in VB

Many of the API calls take a variant array. In order to avoid “Type Mismatch” exceptions from the OLE interface, you must DIM and REDIM a variant array in a particular way. Simply passing in a Variant or an array of strings will fail. Here is the basic means for allocating an array. It also demonstrates why we have so many “GetSize” or “GetNumOf” calls in the API:

Ex 1: Dimension arrays so we can pass them to the server:

‘ Get number of cells with data in WBS col

DIM iWBSSize as Integer

iWBSSize = objSession.GetFilterSize 1

‘ We should validate size > 0 here

‘ Get the references to cells with data

DIM varMyWBSFilter as Variant

REDIM varMyWBSFilter as Integer[iWBSSize]

objSession.GetFilter varMyWBSFilter

‘ Get the data contained in the WBS column

DIM varMyWBS as Variant

REDIM varMyWBSFilter as String[iWBSSize]

ObjSession.GetData varMyWBS, varMyWBSFilter

5.2.3 Generic Usage Examples

Here are some basic examples of usage. NOTE: Samples are in pseudo-VB code to demonstrate capability, so certain details about dimensioning objects and checking return values are removed for purposes of clarity.

Ex 2: Calculate the default case and get the totals:

>>> dimension Session as ACE.Session or AES.Session.1 object

Session.FileOpen “mysess.acw”, password

Session.CopyCaseOverride “”

If Session.Evaluate(false)

 NumCodes = Session.GetFilterSize 0 ‘ get all rows in session

 >>> dimension TotalsArray[NumCodes], RowIDs[NumCodes]

 Session.GetFilter 0, RowIDs

 Session.GetTotals TotalsArray, RowIDs ‘ get actual results from calc

End if

Ex 3: Calculate all cases in session:

>>> dimension Session as ACE.Session or AES.Session.1 object

‘ Open session and find out how many rows have codes.

Session.FileOpen “mysess.acw”, password

NumCodes = Session.GetFilterSize(Session.GetColumnID(“ACEEXEC CODE”))

>>> dimension TotalsArray[NumCodes], RowIDs[NumCodes], ExecCodes[NumCodes]

‘ Get a filter of rows that have codes and then get the codes.

Session.GetFilter(Session.GetColumnID(“ACEEXEC CODE”, RowIDs)

Session.GetData(ExecCodes, RowIDs)

‘ Get number of cases in the session.

NumCases = Session.NumSensCases

>>> dimension CaseTotals[NumCases], CaseList[NumCases]

‘ Get a list of the case names so we can calculate them.

Session.GetSensCaseTitles CaseList

For idx = 1 to CaseList.Size

 ‘ Copy the overrides of the current case and evaluate it.

 Session.CopyCaseOverrides CaseList[idx]

 If Session.Evaluate(false)

 Session.GetTotals TotalsArray, RowIDs

 ‘ do something with totals array

 End if

End for

API Method Summary

This section summarizes the API calls available when using ACE as an automation server.

· File IO Actions (FileNew, FileOpen, FileSaveAs, Testing)
· Calculating a Session (SyntaxCheck, Evaluate, GetErrorList, GetErrorListSize)
· Accessing Session Column Titles (GetCategoryTitles, GetColumnTitle, GetColumnID, GetFixedColumnTitles, GetSensCaseTitles, RelabelFiscalYears, SetCategoryColumnTitle)
· General Sheet Access (Reading: GetASCIIDefinitions, GetCatCodesInSection, GetData, GetFilter, GetFilterSize, GetNumItemsInColumn, GetNumCatCodesInSection, GetSections; Writing: ClearColumn, SetData, SetRowDefinition)
· Overriding Case and FY Inputs (Case: ClearCaseOverrides, CopyCaseOverrides, GetCaseOverrides, SetCaseOverrides; FY: GetFYOverrides, ResetFYOverrides, SetFYOverrides)
· Accessing Results (GetFYResults, GetRisk, GetRiskAtEveryFifth, GetTotals, HasResults)
· Report-oriented Actions (GetFYValuesForCategory, ReleaseReport, SummarizeYearsByCategory)
· Properties (BaseYear, CaseTitle, Currency, ExecLength, FirstYear, last year, MaxRows, NumCateogries, NumFixedCols, NumRiskIterations, NumSensCases, NumSections, Units, Visible, Version)
· Deprecated Calls

5.3 File IO Actions

Use these calls to load, save and create a session.

BOOL FileNew(I2[in] BaseYear, I2[in] FirstYear, I2[in] LastYear, BSTR[in] SessionName, I4[in] MaxRows, BSTR[in] Units, BSTR[in] Currency, BSTR[in] Password)
Creates a new ACE session.

BOOL FileOpen(BSTR[in] FileName, BSTR[in] Password)
Opens the specified ACE session file. The ACE executive intends this method for use. So in addition it finds the exec code and type columns in the session and creates an Exec code map. The session must have code and type columns or the open will fail. It adds a temporary “API case” column for use during evaluation, so that the default case column contained with the session file remains unaffected.

BOOL FileSaveAs(BSTR[in] FileName)
Saves the current session under the new file name. It will remove the temporary, internal “API case” column before saving the session.

Testing(BSTR[in] TestString)
Displays message box with specified string.

5.4 Calculating a Session

These calls generate an estimate from the session model.

BOOL SyntaxCheck(BOOL[in] WithRisk)

This function will perform preliminary examinations of the session, gathering and compiling intermediate values for subsequent call to Evaluate(…). Pass “TRUE” as parameter if a full RI$K evaluation is to be performed. It returns “FALSE” if the syntax check failed; as a result, ACE is not prepared to evaluate the session. Please Note: Calling any “Set” functions or changing any parameters will invalidate the syntax check, except for the following “Set” functions: SetFYOverrides(…), CopyCaseOverrides(…), SetCaseOverrides(…), ClearCaseOverrides(), and ResetFYOverrides().

BOOL Evaluate(I2[in] ThenYear)

This function performs the necessary calculations to produce results for the “Exec” case. A syntax check is performed if no syntax check was performed or the session has been modified in such a way that the previous syntax check has been invalidated. If the RI$K was enabled during syntax check and no other RI$K evaluation has yet occurred, a RI$K evaluation will be performed and detailed statistics will be retained. (Detailed RI$K statistics are retained until the next syntax check or failed evaluation.) Pass in “0” if normal Base-Year calculation should be performed. Pass in “1” if Then-Year inflation should be applied to cost rows. (Eventually, other forms of inflation will be supported.) Returns “FALSE” if results could not be generated.

5.5 Accessing Session Settings, Titles, etc.

These actions access the column titles in the session. The column titles are commonly used with the Column-oriented actions discussed later. All of these calls require an array of a predefined size, so their respective property should be queried and array dimensioned before calling them (see the Properties section below).

BOOL GetCategoryTitles(Variant[out] TitleNames)
Returns the list of category names (titles) contained in the session. If the array is not big enough, an E_FAIL exception is thrown [see NumCategoryTitles property]. The Approp, CES#, and WBS# column titles are included here, since they are commonly used as categories. The Variant for this function should be Re-Dimmed as a String array before being passed in.

BSTR GetColumnTitle(I4[in] ColumnID)

Returns the case title for the specified column ID. The column IDs for fixed columns are defined in the ACEROW clipboard specification and range from 1 to ~85. They can be found at the end of this document.

I4 GetColumnID(BSTR[in] ColumnTitle)

Returns the column ID that has given title. Column IDs are defined in the ACEROW clipboard specification. They can be found at the end of this document.

BOOL GetFixedColumnTitles(Variant[out] ColNames)
Returns the list of all fixed column titles contained in the session. This list includes everything except sensitivity case columns and yearly phasing columns (e.g. FY 1990 through FY 2015). If the array is not big enough, an E_FAIL exception is thrown [see NumFixedColumns property]. The Variant ColNames should be Re-Dimmed as a String array before being passed in.

BOOL GetSensCaseTitles(Variant[out] CaseNames)
Returns the list of sensitivity case names (titles) contained in the session. This call will not return the name of the temporary, internal “API case” used for evaluation. If the array is not big enough, an exception is thrown [see NumSensCases property]. The Variant CaseNames should be Re-Dimmed as a String array before being passed in.

BOOL SetCategoryColumnTitle(I2[in] CategoryID, BSTR[in] NewTitle)
Sets the category column title to the given name. The column is selected by passing a number from 1 to 15, representing the category that the user wishes to change. (You cannot rename the Approp, CES# or WBS# columns.) If the category is not found a "FALSE" is returned.

5.6 General Sheet Actions

These actions access general column data (that is not related to overrides or results). You can use these calls to retrieve information or manipulate the sheet. There are basically two kinds of calls, filtered and unfiltered. Unfiltered calls affect the entire column. Filtered calls have a filtering array that determines which rows the call affects.

5.6.1 Reading from the sheet

BOOL GetASCIIDefinitions(Variant[in] DefIDs, Variant[out] DefContents, I2[in] CharControlMask)
Returns the ASCII versions of the definitions requested. If a definition could not be found, an empty string is returned. If no definitions could be found or arrays are of different sizes, FALSE is returned. Set bits corresponding to control characters that you wish to have pass through in the string. Set the mask to receive the character, reset (set to 0) to receive replacement value. The "Reset" value is the replacement value for the control character in question:

5.6.1.1 Mask
Description
Set(1)
Reset(0)

1
Tab
\x09
\x20

2
Line Feed
\x0a
\x20

4
Carriage Return
\x0d
<removed>

BOOL GetCatCodesInSection(BSTR[in] ColumnTitle, BSTR[in] SectionID, Variant[out] Codes)
This method searches a category column to build a list of category codes. The search is limited to the section specified -- if “” (empty string) is passed in, then the whole column is searched; if “*” is passed in, then the first section is searched. The list contains one entry for each code found in the column, even if the code is found multiple times (thus, every code shows up only once in “Codes” array and is unique in that array.) Usually, one of the codes returned will be “”(empty string). This allows you to capture rows that have no category code assigned to them during cost summarization. Use GetNumCatCodesInSection() to find out how large to assign the array. If the section cannot be found, then the method returns FALSE. If the array is not big enough to hold all of the entries, then the method returns FALSE and an E_FAIL exception is thrown. The Variant Codes should be Re-Dimmed as a String array before being passed in.

BOOL GetData(I4[in] ColID, Variant[out] Data, Variant[in] RowFilter)

This call returns the contents in the specified column. The Row filter determines which rows’ data to return. If the ColID cannot be found or the RowFilter does not exist a FALSE is returned. If the array (Data) is not big enough, an E_FAIL exception is thrown. The Variant array Data should be Re-Dimmed as a String before being passed in. The Variant RowFilter should be Re-Dimmed as a long array before being passed in.

BOOL GetFilter(I4[in] ColID, Variant[out] RowFilter)

This call lets the client pass in an array. It returns FALSE if the ColID or the RowFilter does not exist. If a column ID of 0 is passed in, the method returns references to all rows in the session. It returns an E_FAIL exception if the arrays are improperly sized. [see GetFilterSize()]. The Variant RowFilter should be Re-Dimmed as a long array before being passed in.

I4 GetFilterSize(I4[in] ColumnID)
Returns the number of cells that contain information for the given column. Empty cells are not counted. If a column ID of 0 is passed in, the method returns the total number of rows in the session. This method is usually used in conjunction with FillRowFilter(), which fills an array with row filter identifiers. This returns a -1 if the ColumnID cannot be found.

I4 GetNumCatCodesInSection(BSTR[in] ColumnTitle, BSTR[in] SectionID)
This method searches a category column to find the number of distinct category codes. The search is limited to the section specified – if “” (empty string) is passed in for the section, then the whole column is searched; if “*” is passed in, then the first section is searched. Each code is counted only once, even if the code appears multiple times. It returns a -1 if the ColumnTitle cannot be found or SectionID is invalid.

BOOL GetSections(Variant[out] SectionIDs, Variant[out] SectionDescs)
Returns a list of sections tokens (IDs) and their descriptions. The caller is responsible for dimensioning the array to the proper size. The size can be retrieved using the attribute NumSections. If the array is not big enough, an E_FAIL exception is thrown. All section IDs will be unique. If the sections could not be retrieved (such as there were non-unique section IDs), then the method returns FALSE. The Variants SectionIDs and SectionDescs should be Re-Dimmed as String arrays before being passed in.

5.6.2 Writing to the Sheet

BOOL ClearColumn(BSTR[in] ColumnTitle)
Deletes all the data in the specified column. If the ColumnTitle cannot be found FALSE is returned.

BOOL SetData(I4[in] ColID, Variant[in] Data, Variant[in] RowFilter)
Updates the sheet cells with the data provided in “Data”. The method pastes data into consecutive cells, beginning with row 1. If the “Data” array is smaller than the WBS, rows below the last pasted item are left untouched. The “RowFilter” array contains the list of row numbers to place the “Data” into. Data is pasted only into these rows, leaving all other rows untouched. The Variant Data should be Re-Dimmed as a String array before being passed in. The Variant RowFilter should be Re-Dimmed as a long array before being passed in.

5.7 Overriding Case and FY Inputs

These actions allow you to modify case and FY overrides, affecting what results are generated during a call to Evaluate().

5.7.1 Overriding Sensitivity Case (Total) values:

BOOL ClearCaseOverrides()

Clears the “Exec” case column. Always returns “TRUE”.

BOOL CopyCaseOverrides(BSTR[in] CaseName)

Clears the “Exec” case column, and then copies the overrides found in the specified case to the “Exec” case column. If CaseName is blank, the default case for the session will be used. Returns “FALSE” if the case could not be found in which case the “Exec” column would be left undisturbed.

BOOL GetCaseOverrides(BSTR [in]CaseName, Variant[out] Overrides, Variant[in] RowFilter)

Fills the “Overrides” array with overrides contained in the specified case. If “CaseName” is empty, then the overrides for the “Exec” case are returned. Case overrides are values contained in the case column that do not contain a “*” suffix. These are usually numbers, but can also be dates of the form “ddMMMyyyy”. Returns “FALSE” if the case could not be found. Returns an E_FAIL exception if the arrays are not sized properly. The Variant Overrides should be Re-Dimmed as a String array before being passed in. The Variant RowFilter should be Re-Dimmed as a long array before being passed in.

BOOL SetCaseOverrides(Variant[in] Overrides, Variant[in] RowFilter)

Applies the given overrides to the “Exec” case column. The rows included in the RowFilter will be set to the value supplied in the parallel Overrides array. Passing in a blank override will restore the item to the value in the case last copied using CopyCaseOverrides(…) or clear the override for that row if CopyCaseOverrides(…) had not been called. Passing in a “*” will clear the override, thus allowing the equation result to pass through. If you want to retain the current override for a row, remove the row from the row filter. (One way to do this is to set the RowFilter to –1 for all rows with blank override values.) Overrides can be numbers or dates of the form “m/d/y”, “d/MMM/y”, or “dMMMy” (i.e., numbers are free floating and delimiters are optional for military format). Malformed dates and other non-numeric values are ignored. Returns an E_FAIL exception if arrays are incorrectly sized. The Variant Overrides should be Re-Dimmed as a String array before being passed in. The Variant RowFilter should be Re-Dimmed as a long array before being passed in.

5.7.2 Overriding FY values

BOOL GetFYOverrides(I2[in] Year, Variant[out] Overrides, Variant[in] RowFilter)

Gets the current overrides (sunk costs) for the given year. Only sunk costs and overrides applied using SetFYOverrides(...) will be reported. Input values stored in the session must be retrieved using GetFYColumn(…). The Year must be between the start and end year for the session, inclusive. Returns “FALSE” if the year is out of range. Returns an E_FAIL exception if the arrays are improperly sized. The Variant Overrides should be Re-Dimmed as a String array before being passed in. The Variant RowFilter should be Re-Dimmed as a long array before being passed in.

BOOL ResetFYOverrides()

Clears all overrides set using the SetFYOverrides(…) function; this effectively resets the FY inputs of the session to their original values when first loaded. Returns TRUE always.

BOOL SetFYOverrides(I2[in] Year, Variant[in] Overrides, Variant[in] RowFilter)

Applies the overrides as “sunk” costs to the rows defined in the filter for the given year. You can pass in a blank to clear an override you had previously set with a call to this method. If the cell already has a FY input or “sunk” cost input stored in the session, it cannot be cleared using this function even if a blank is passed in. [“Sunk” FY values affect the total after the row is initially calculated. It has no effect on FYI built-in functions, which will still retrieve the original FY input value.] All overrides can be erased using ResetFYOverrides(). The Year must be between the start and end year for the session, inclusive. Returns “FALSE” if the year is out of range. Returns an E_FAIL exception if the arrays are improperly sized. The Variant Overrides should be Re-Dimmed as a String array before being passed in. The Variant RowFilter should be Re-Dimmed as a long array before being passed in.

5.8 Accessing Results

BOOL GetFYResults(I2[in] Year, Variant[out] Values, Variant[in] RowFilter)

Retrieves the results for the given fiscal year. If the value for a row is zero, an empty string is returned. This should not be called until after Evaluate(…) succeeds. This call is identical to GetFYColumn(Year, FALSE, …), which has been deprecated. Returns “FALSE” if there are no results to return, the year is out of range. Returns an E_FAIL exception if the arrays are improperly sized. Returns an E_FAIL exception if the arrays are improperly sized. The Variant Values should be Re-Dimmed as a String array before being passed in. The Variant RowFilter should be Re-Dimmed as a long array before being passed in.

BOOL GetRisk(BSTR[in] ExecCode, Variant[out] Factors)
Returns every iteration of factors for the specified row. The array must be large enough to hold all of the iterations (use NumRiskIterations property). This method will return FALSE if the row does not have RI$K statistics, the row does not exist, or RI$K calculation was not performed. Returns an E_FAIL exception if the array is too small. The Variant Factors should be Re-Dimmed as a String array before being passed in.

BOOL GetRiskAtEveryFifth(BSTR[in] ExecCode, Variant[out] Factors)
Returns factors at every fifth percentile, from 5% to 95%. The “Factors” array must have at least 19 slots. This method will return FALSE if the row does not have RI$K statistics, the row does not exist, or RI$K calculation was not just performed. (It’s a little more complicated than this, but this is sufficient explanation). Returns an E_FAIL exception if the array is too small. The Variant RowFilter should be Re-Dimmed as a long array before being passed in.

BOOL GetTotals(Variant[out] Values, Variant[in] RowFilter)

Retrieves the total column for a resulting calculation (without the “*” suffixes). If the value for a row is zero, an empty string is returned. This should not be called until after Evaluate(…) succeeds. This call is identical to GetFYColumn(0, FALSE, …), which has been deprecated. Returns “FALSE” if there are no results to return. Returns an E_FAIL exception if the arrays are improperly sized. Returns an E_FAIL exception if the arrays are improperly sized. The Variant Values should be Re-Dimmed as a String array before being passed in. The Variant RowFilter should be Re-Dimmed as a long array before being passed in.

BOOL HasResults()

Returns “TRUE” if the last Estimate(…) call was successful and results are available from that calculation. Returns “FALSE” if no results are available in ACE server, either because no calculation has yet been performed or the most recent attempt failed.

5.9 Report-oriented Actions

These actions offer ways to produce and access report data, which is stored and accessed separately from session data. It is important to note that you must release a report once you are done accessing it.

BSTR GetFYValuesForCategory(I4[in] ReportID, BSTR[in] CatCode, I2[in] FirstYear, I2[in] LastYear, Variant[out] Values)

Returns values for the specified year range for the given category code that was generated using the SummarizeYearsByCategory() method. The return value is the sum total for the year range requested. If the code cannot be found in the summary report, then all values are set to 0.0. Returns an E_FAIL exception if the array is improperly sized. The Variant Values should be Re-Dimmed as a String array before being passed in.

BOOL ReleaseReport(I4[in] ReportID)
Destroys the report identified by ReportID after it is no longer needed to free its associated memory. Report IDs are returned from functions such as SummarizeYearsByCategory()after the creation of a report. TRUE is returned if the report is successfully destroyed. Returns TRUE always.

I4 SummarizeYearsByCategory(BSTR[in] ColumnTitle, BSTR[in] SectionID)
Tells the session to build a report that summarizes the current estimate by the category (“ColumnTitle”) selected. Each unique category code found in the column specified will have its own row of fiscal year data. The session must have been calculated before this method is called. The summary will only cover the section specified – if “”(empty string) is passed in, then the whole column is summarized; if “*” is passed in, then the first section is summarized. The method returns FALSE if the report could not be generated: The section could not be found, an invalid section exists in the session, no calculation has been performed or a memory error occurred. This ID can be passed to GetFYValuesForCategory()and ReleaseReport() to identify the report. ReleaseReport() should be called after the report is no longer needed to free its associated memory. Also note that the current functionality only supports the creation of one report at a time. Returns an ID > 0 that identifies the summary report that will be created. Zero is returned if the report could not be created.

5.10 Properties

These are session properties. Some of them are read-only, meaning that you can view the setting but not change it.

I2 BaseYear
Get/Set the base year for the session.

BSTR CaseTitle
Get/Set the title for the calculated sensitivity case. This is the “API case” created when the session is loaded.

BSTR Currency
Get/Set the currency for the session (e.g., “$”).

I4 ExecLength
Gets number of rows that contain an ACE Executive code. This value is read-only – you cannot assign it a new value.

I2 FirstYear
Gets the first year of the session. This value is read-only – you cannot assign it a new value.

I2 LastYear
Gets the last year of the session. This value is read-only – you cannot assign it a new value.

I4 MaxRows
Gets/Sets the number of rows in the sheet. “Get” will include trailing blank rows that appear after the logical end of the session. “Set” will add new trailing blank rows to the bottom of the session. It is not recommended that you reduce the number of rows in a session, since you may end up deleting CERs.

I2 NumCategories
Gets the number of category columns in the session (usually 15). This value is read-only – you cannot assign it a new value.

I2 NumFixedCols
Gets the number of fixed columns in the session. These include all columns in the session except for FY columns and sensitivity case columns. This value is read-only – you cannot assign it a new value.

I4 NumRiskIterations
Gets/Sets the number of iterations to perform/will be performed during a RI$K calculation. If this number is examined after a calculation, it returns the number of iteration performed during a RI$K calculation. You can fool yourself if you set it to a different number without calculating, since it would no longer reflect then number of iterations performed, but instead the number of iterations to be performed.

I2 NumSections
Gets the number of section headers in the session. Section headers are rows that contain a unique ID prefixed with an asterisk, e.g., “*WBS” or “*PROD”. If NumSections == 0, then there is one or more invalid section IDs in the session, any valid session will return 1 or more sections, even if no sections are defined, since ACE implicitly assigns “*WBS” to the first section of CERs if no explicit section ID is assigned to it.

I2 NumSensCases
Gets the number of sensitivity cases in the session. This value is read-only – you cannot assign it a new value.

BSTR Units
Gets/Sets the units for the session, e.g. “”, “K”, “M”, “B”.

BSTR Version
Gets the version number of server (e.g. 4.0, 4.1, 5.0). This allows the client to determine which API the server supports.

BOOL Visible
“Get” tells if ACE is visible or not. “Set” tells ACE to show or hide itself.

5.11 Numeric Column Identifiers

5.11.1 Case and Yearly Column Identifiers

Columns that are dynamically allocated or created by the user have logical column IDs. These IDs may be different from session to session, so they only have scope while the same session is still loaded in the server. To access Case IDs, pass the case name into “GetColumnID(strCaseName)”. You can use this ID when using any API call that requires a case ID. To access fiscal year values, use SetFYOverrides(…) and GetFYResults(…).

If you must access the actual sheet contents of a FY column, construct the title for the desired FY column and pass it into GetColumnID(…). The current format for the title is “FY ####” where #### is the year you wish to access. This is not recommended, as these column titles may change in the future without notice, and your constructed title may no longer exist in the session.

5.11.2 Category Columns

Category columns – those displayed in blue in the list below – need to be accessed using their column title. These columns are interchangeable and users may change any of the titles to fit their needs. For instance, in most sessions column ID 19 is the “ACEIT Executive code column”. But in some sessions, column ID 12 has the title “ACEEXEC CODE” and contains that category’s data. You can get a list of category column titles and scan the list for the column that you wish to have. You may also make assumptions that certain category titles exist – at your own risk. For instance, the ACEIT Executive FADSS module expects a category column entitled “FADSS” and will not load a session without one.

Two categories are guaranteed to exist in the session when a session opens. These names will never change and are the only column titles that are guaranteed to remain the same. (Since they are category columns, their IDs are not assured.) The “ACEEXEC CODE” category column contains codes that tell ACEIT Executive whether or not to display the row. The “ACEEXEC TYPE” category column contains codes that tell ACEIT Executive whether the row is primarily for input or output.

5.11.3 Fixed Column Identifiers

You can access any fixed columns using an identifier. It is strongly recommended that you do not use the column title for these columns, since they may change without notice, and for some older sessions the titles of some important rows are different. The only exception to this rule is when you are accessing category columns (see above).

Column ID
Description

1
WBS/CES description

2
CES Number

3
WBS/Item Number

4
Appropriation

5
WBS Expansion available?

6
Model

7
Service

8
Theater

9
MDEP

10
Key Unit Cost Category

11
PME Matrix

12
Category 1

13
Category 2

14
Category 3

15
Category 4

16
Category 5

17
Category 6

18
Category 7

19
Category 8 (a.k.a. ACEEXEC CODE)

20
Cateogry 9 (a.k.a. ACEEXEC TYPE)

21
Flag indicating whether or not user can edit CES #

22
Unique ID

23
Sensitivity case stub (only used for new sessions)

24
Equation/Throughput

25
Fiscal Year

26
Units

27
WBS Linked to Meth Library

28
Fee Rate

29
G&A Rate

30
Overhead Rate

31
Currency Index

32
Phasing Method

33
Percent Spent

34
Percent Time

35
Peakness

36
Start Date

37
Finish Date

38
Lead/Lag

39
Estimate Type

40
Prior Quantity

41
Buy Quantity

42
Curve Slope

43
Theory (i.e., U or C)

44
Reference Cost Type

45
100% Shared Learning Keyword

46
Rate

47
Rate Slope

48
Cum unit @ Break

49
Slope @ Break

50
Displacement @ Break

51
Lost Learning @ Break

52
Fiscal year column stub (only used for new sessions)

53
Phase Code (FSED, PROD, OPSU)

54
WBS/CES/VAR Definition Keyword

55
Methodology Description Keyword

56
Learning Description Keyword

57
Phasing Description Keyword

58
Adjustments Description Keyword

59
Sensitivity Description Keyword

60
CER subject Keyword

61
WBS Expansion Keyword

62
RI$K Description Form

63
RI$K Adjusted SE

64
RI$K Low or Low %

65
RI$K Low Interpretation

66
RI$K High or High %

67
RI$K High interpretation

68
RI$K Spread

69
RI$K Skew

70
RI$K Schedule/Technology Penalty

71
RI$K Grouping

72
RI$K Group Strength

73
RI$K Random Seed

74
RI$K Mean

75
RI$K Standard Deviation

76
RI$K Level 1

77
RI$K Level 2

78
RI$K Level 3

79
RI$K Level 4

80
RI$K Level 5

81
RI$K Definition Keyword

5.12 Errors and Failures

This section discusses the different types of failures that can occur and the reasons behind them.

1) E_FAIL/Exception on any type mismatch. The client can't be written correctly if it isn't passing in the right types of arguments. (This includes NULL parameters.)

2) E_FAIL/Exception on any improperly prepared object or array -- right now this basically means array size.

3) Return FALSE if a value is out of range or no match can be found. For instance, an invalid case name, year out of range, or incorrect column ID.

4) Return FALSE if the server is not prepared to accomplish the task. For instance returning RI$K statistics before the session is evaluated.

5) Return FALSE on partial success, if the operations are dependent. For instance, if the syntax check succeeds but the evaluate fails.

6) Return TRUE on partial success, if the operations are independent. For instance, ignore any invalid RowIDs (such as -1) and continue with processing the rest of the IDs.

7) Return TRUE on complete success. Any operation that meets the API obligation for a successful operation.

Another rule of thumb:

If the client cannot determine if a call succeeds, then the call should not result in an exception. For instance, if the client does not know if the session calculates, we should not throw an exception when Evaluate() is called.
Not implemented in 4.1

The stubs for the following calls were placed in the 4.1 interface, but were never implemented. They are no-action methods.

BOOL GetErrorList(Variant[out] ErrorID, Variant[out] Desc, Variant[out] Severity, Variant[out] HelpID, Variant[out] Row, Variant[out] ExecCode)

Returns the attributes of the errors logged during the previous Evaluate(…) or SyntaxCheck(…) call. The arrays should be dimensioned with GetErrorListSize() number of elements. The Row number will be 1-based and is the actual row number in the session file. A Row number of 0 means that it is a general error that is not applicable to a specific row. The ExecCode is filled with a corresponding executive code if the row has one or blank if the row does not have one. The current values for Severity are FATAL = -1, WARNING = -2, INFO = -3. This call returns “FALSE” there are no errors in list or the arrays are not properly dimensioned.

I4 GetErrorListSize()

Returns the number of errors and warnings that were logged during the previous Evaluate(…) or SyntaxCheck(…) call. It returns 0 if no errors were logged or neither method was called.

5.13 Deprecated Calls

Please do not use these calls. If you are using these calls, you may wish to modify your application as to use the non-deprecated calls described above. We continue to support these calls to service existing products and may at any time remove these from a future revision of ACEIT.

BOOL Calculate()

Please use Evaluate() instead.

BOOL CalculateCase()

Please use CopyCaseOverrides() and Evaluate() instead.

BOOL ExecCalcWhatIf()
Please use SetCaseOverrides() and Evaluate() instead.

BOOL ExecCheckSyntax()
Please use SyntaxCheck() instead. You no longer need to call this before affecting FY overrides.

BOOL ExecEvalCase()
Please use Evaluate() instead.

BOOL ExecGetColumns()

Please use GetFilter() and GetData(). This was deprecated to avoid confusion on how to filter on the “AceExec Code” category column.

BOOL GetDataInColumn()
Please use GetData(). This was deprecated since we did not want to depend on using a text string to select fixed column titles.

BOOL GetFYColumn)
Please use GetFYOverrides() or GetResults() instead.

BOOL GetItemsInColumn()
Please use FillRowFilter() and GetData(). This was deprecated due to the confusing nature of the call (both retrieving the filter and values for the column).

I4 GetNumItemsInColumn()
Please use GetFilterSize().

BSTR ExecPeekFYValueRow()
Please use GetFYResults() instead.

BOOL ExecPokeFYValueRow()
Please use SetFYOverrides() instead.

BOOL ExecPokeFYTotalRow()
Please use GetTotals() instead.

BOOL RelabelFiscalYears()
SetCell()
BOOL SetDataInColumn()
Please use SetData().

SetFYCell()
BOOL SetFYColumn()
Please use SetFYOverrides instead.

BOOL SetRowDefinition()
BOOL SetRowFiscalYearValues()
BOOL SetRowFixedValues()
5.13.1 Deprecated Properties

BSTR CustInfTableName
BSTR FullName
BSTR Name
BOOL RiskEnabled
This flag is now a parameter of the SyntaxCheck() call.

BSTR SysInfTableName

PAGE
17

